Wei-Xi LI

Curriculum Vitae

School of Mathematics and Statistics,Wuhan University, Wuhan 430072, China
wei-xi.li@whu.edu.cn

Publication

  1. Ling-Bing He, Jie Ji and Wei-Xi Li
    On the Boltzmann equation with soft potentials: Existence, uniqueness and smoothing effect of mild solutions
    Preprint. arXiv:2410.13205
    arXiv   
  2. Wei-Xi Li, Zhan Xu and Anita Yang
    Global well-posedness of the MHD boundary layer equations in the Sobolev Space
    Preprint. arXiv:2409.11009
    arXiv   
  3. Wei-Xi Li, Tianyuan Yu and Xiaojing Xu
    On the hydrostatic approximation of the 3D Boussinesq equations of damped wave type
    Preprint.
  4. Jun-Ling Chen, Wei-Xi Li and Chao-Jiang Xu
    Sharp regularization effect for the non-cutoff Boltzmann equation with hard potentials
    Annales de l'Institut Henri Poincaré C. Analyse non linéaire (Forthcoming).
  5. Ke Chen, Wei-Xi Li and Tong Yang.
    Local Well-Posedness of the Three Dimensional Linearized MHD Boundary Layer System.
    Communications in Mathematical Analysis and Applications 3(2024), No. 4, 483-500
  6. Wei-Xi Li, Marius Paicu and Ping Zhang
    Gevrey solutions of quasi-linear hyperbolic hydrostatic Navier-Stokes system
    SIAM Journal on Mathematical Analysis 55 (2023), no. 6, 6194–6228
    DOI   
    @article {MR4661716,
        AUTHOR = {Li, Wei-Xi and Paicu, Marius and Zhang, Ping},
         TITLE = {Gevrey solutions of quasi-linear hyperbolic hydrostatic
                  {N}avier-{S}tokes system},
       JOURNAL = {SIAM J. Math. Anal.},
      FJOURNAL = {SIAM Journal on Mathematical Analysis},
        VOLUME = {55},
          YEAR = {2023},
        NUMBER = {6},
         PAGES = {6194--6228},
          ISSN = {0036-1410},
       MRCLASS = {35Q30 (35L72 76D03)},
      MRNUMBER = {4661716},
           DOI = {10.1137/22M1526290},
           URL = {https://doi.org/10.1137/22M1526290},
    }
    
  7. Wei-Xi Li, Tong Yang and Ping Zhang
    Gevrey well-posedness of quasi-linear hyperbolic Prandtl equations
    Communications in Mathematical Analysis and Applications 2 (2023), no. 4, 388–420
    DOI   
    @article {MR4726840,
        AUTHOR = {Li, Wei-Xi and Yang, Tong and Zhang, Ping},
         TITLE = {Gevrey well-posedness of quasi-linear hyperbolic {P}randtl
                  equations},
       JOURNAL = {Commun. Math. Anal. Appl.},
      FJOURNAL = {Communications in Mathematical Analysis and Applications},
        VOLUME = {2},
          YEAR = {2023},
        NUMBER = {4},
         PAGES = {388--420},
          ISSN = {2790-1920},
       MRCLASS = {76D10 (35L72 35L80 35Q30 76D03)},
      MRNUMBER = {4726840},
    }
    
  8. Hongmei Cao, Wei-Xi Li and Chao-Jiang Xu
    Analytic smoothing effect of the spatially inhomogeneous Landau equations for hard potentials.
    Journal de Mathématiques Pures et Appliquées 176 (2023), 138–182.
    arXiv    DOI   
    @article {MR4612704,
        AUTHOR = {Cao, Hongmei and Li, Wei-Xi and Xu, Chao-Jiang},
         TITLE = {Analytic smoothing effect of the spatially inhomogeneous
                  {L}andau equations for hard potentials},
       JOURNAL = {J. Math. Pures Appl. (9)},
      FJOURNAL = {Journal de Math\'{e}matiques Pures et Appliqu\'{e}es.
                  Neuvi\`eme S\'{e}rie},
        VOLUME = {176},
          YEAR = {2023},
         PAGES = {138--182},
          ISSN = {0021-7824,1776-3371},
       MRCLASS = {35B65 (35H20 35Q20 35Q82)},
      MRNUMBER = {4612704},
           DOI = {10.1016/j.matpur.2023.06.004},
           URL = {https://doi.org/10.1016/j.matpur.2023.06.004},
    }
    
  9. Wei-Xi Li, Rui Xu and Tong Yang
    Global Well-posedness of a Prandtl Model from MHD in Gevrey Function Spaces.
    Acta Mathematica Scientia, 42(2022), no. 6, 2343-2366. Dedicated to Professor Banghe LI on the occasion of his 80th birthday
    arXiv    DOI   
    @article {MR4494626,
        AUTHOR = {Li, Wei-Xi and Xu, Rui and Yang, Tong},
         TITLE = {Global well-posedness of a {P}randtl model from {MHD} in
                  {G}evrey function spaces},
       JOURNAL = {Acta Math. Sci. Ser. B (Engl. Ed.)},
      FJOURNAL = {Acta Mathematica Scientia. Series B. English Edition},
        VOLUME = {42},
          YEAR = {2022},
        NUMBER = {6},
         PAGES = {2343--2366},
          ISSN = {0252-9602},
       MRCLASS = {76W05 (35M33 35Q35)},
      MRNUMBER = {4494626},
           DOI = {10.1007/s10473-022-0609-7},
           URL = {https://doi.org/10.1007/s10473-022-0609-7},
    }
    
  10. Wei-Xi Li and Tong Yang,
    3D hyperbolic Navier-Stokes equations in a thin strip: global well-posedness and hydrostatic limit in Gevrey space.
    Communications in Mathematical Analysis and Applications, 1 (2022), 471-502.
    arXiv    DOI   
    @article {MR4700999,
        AUTHOR = {Li, Wei-Xi and Yang, Tong},
         TITLE = {3{D} hyperbolic {N}avier-{S}tokes equations in a thin strip:
                  global well-posedness and hydrostatic limit in {G}evrey space},
       JOURNAL = {Commun. Math. Anal. Appl.},
      FJOURNAL = {Communications in Mathematical Analysis and Applications},
        VOLUME = {1},
          YEAR = {2022},
        NUMBER = {4},
         PAGES = {471--502},
          ISSN = {2790-1920},
       MRCLASS = {76D03 (35Q30 76D05)},
      MRNUMBER = {4700999},
    }
    
    
  11. Wei-Xi Li and Rui Xu,
    Gevrey well-posedness of the hyperbolic Prandtl equations.
    Communications in Mathematical Research, 38 (2022), no. 4, 605–624. In honor of Professor Chao-Jiang Xu on the occasion of his 65th birthday
    arXiv    DOI   
    @article {MR4498949,
        AUTHOR = {Li, Wei-Xi and Xu, Rui},
         TITLE = {Gevrey well-posedness of the hyperbolic {P}randtl equations},
       JOURNAL = {Commun. Math. Res.},
      FJOURNAL = {Communications in Mathematical Research},
        VOLUME = {38},
          YEAR = {2022},
        NUMBER = {4},
         PAGES = {605--624},
          ISSN = {1674-5647},
       MRCLASS = {35Q35 (76D10)},
      MRNUMBER = {4498949},
    MRREVIEWER = {Suhua Lai},
    }
    
  12. Wei-Xi Li, Nader Masmoudi and Tong Yang.
    Well-posedness in Gevrey function space for 3D Prandtl equations without Structural Assumption.
    Communications on Pure and Applied Mathematics 75(2022), 1755–1797.
  13. Renjun Duan, Wei-Xi Li and Lvqiao Liu,
    Gevrey regularity of a mild solution to the non-cutoff Boltzmann equation.
    Advances in Mathematics 395 (2022), Paper No. 108159, 75pp.
  14. Hua Chen, Xin Hu, Wei-Xi Li and Jinpeng Zhan,
    The Gevrey smoothing effect for the spatially inhomogeneous Boltzmann equations without cut-off.
    Science China Mathematics 65 (2022), no. 3, 443–470
  15. Wei-Xi Li and Rui Xu.
    Well-posedness in Sobolev spaces of the two-dimensional MHD Boundary layer equations without viscosity.
    Electronic Research Archive 29 (2021), no. 6, 4243-4255
  16. Wei-Xi Li and Chao-Jiang Xu.
    Subellipticity of some complex vector fields related to Witten Laplacian.
    Communications on Pure and Applied Analysis 20 (2021), no. 7-8, 2709-2724. Special issue in Honor of the 80th birthday of Professor Shuxing Chen.
  17. Wei-Xi Li and Tong Yang,
    Well-posedness of the MHD boundary layer system in Gevrey function space without Structural Assumption.
    SIAM Journal on Mathematical Analysis 53 (2021), No.3, 3236-3264
  18. Wei-Xi Li and Juan Zeng.
    Weighted and maximally hypoelliptic estimates for the Fokker-Planck Operator with electromagnetic fields.
    Communications in Mathematical Research 37 (2021), pp. 255-270.
  19. Wei-Xi Li and Lvqiao Liu.
    Gelfand-Shilov smoothing effect for the spatially inhomogeneous Boltzmann equations without cut-off.
    Kinetic and Related Models 13(2020), no. 5, 1029-1046
  20. Hua Chen, Xin Hu, Wei-Xi Li and Jinpeng Zhan.
    The resolvent of the linearized Boltzmann operator with a stationary potential.
    Journal of Pseudo-Differential Operators and Applications 11 (2020), no. 2, 733–751
  21. Wei-Xi Li and Tong Yang.
    Well-posedness in Gevrey function space for the Prandtl equations with non-degenerate critical points.
    Journal of the European Mathematical Society , 22(2020) 717-775
  22. Wei-Xi Li, Van-Sang Ngo and Chao-Jiang Xu.
    Boundary layer analysis for the fast horizontal rotating fluids.
    Communications in Mathematical Sciences 17(2019), 299-338
  23. Radjesvarane Alexandre, Frédéric Hérau and Wei-Xi Li.
    Global hypoelliptic and symbolic estimates for the linearized Boltzmann operator without angular cutoff.
    Journal de Mathématiques Pures et Appliquées 126(2019), 1–71
  24. Wei-Xi Li.
    Spectral Analysis for Fokker-Planck operator and Witten Laplacian (in Chinese)
    SCIENTIA SINICA Mathematica 49(2019),161-174. In Honor of the 90th birthday of Professor Minyou Qi.
  25. Wei-Xi Li, Alberto Parmeggiani and Yan-Lin Wang.
    Global Gevrey hypoellipticity for the twisted Laplacian on forms.
    Journal of Pseudo-Differential Operators and Applications 9(2018), 151–171
  26. Wei-Xi Li.
    Compactness criteria for the resolvent of the Fokker-Planck operator.
    Annali della Scuola Normale Superiore di Pisa, Classe di Scienze , Vol. 18, issue 1 (2018), 119-143
  27. Wei-Xi Li.
    Compactness of the resolvent for the Witten Laplacian.
    Annales Henri Poincaré 19 (2018), 1259-1282
  28. Feng Cheng , Wei-Xi Li and Chao-Jiang Xu.
    Vanishing viscosity of Navier-Stokes flow to ideal flow in Gevrey space.
    Mathematical Methods in the Applied Sciences 40(2017), 5161–5176
  29. Feng Cheng , Wei-Xi Li and Chao-Jiang Xu.
    Gevery regularity with weight for incompressible Euler equation in the half plane.
    Acta Mathematics Scientia 37 (2017), no. 4, 1115-1132
  30. Wei-Xi Li, Di Wu and Chao-Jiang Xu.
    Gevrey Class Smoothing Effect for the Prandtl Equation.
    SIAM Journal on Mathematical Analysis 48 (2016),1672–1726
  31. Wei-Xi Li, Peng Luo and Shuying Tian.
    $L^2$-regularity of kinetic equations with external potential.
    Journal of Differential Equations 260 (2016), 5894-5911
  32. Wei-Xi Li.
    Global hypoelliptic estimates for fractional order kinetic equation.
    Mathematische Nachrichten 287(2014), 610-637
  33. Hua Chen, Wei-Xi Li and Ling-Jun Wang.
    Regularity of traveling free surface water waves with vorticity.
    Journal of Nonlinear Science 23(2013), 1111-1142
  34. Frédéric Hérau and Wei-Xi Li.
    Global hypoelliptic estimates for Landau-type operator with external potential.
    Kyoto Journal of Mathematics 53 (2013), 533-565
  35. Wei-Xi Li and Alberto Parmeggiani.
    Gevrey-hypoellipticity for twisted Laplacians.
    Journal of Pseudo-Differential Operators and Applications 4(2013) , 279-296
  36. Wei-Xi Li.
    Global hypoellipticity and compactness of resolvent for Fokker-Planck operator.
    Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 11(2012), 789-815.
  37. Renjun Duan and Wei-Xi Li.
    Hypocoercivity for the linear Boltzmann equation with confining forces.
    Journal of Statistical Physics 148(2012), 306-324
  38. Hua Chen, Wei-Xi Li and Chao-Jiang Xu.
    Gevrey regularity of subelliptic Monge-Ampère equations in the plane.
    Advances in Mathematics 228(2011) 1816-1841.
  39. Hua Chen, Wei-Xi Li and Chao-Jiang Xu.
    Gevrey hypoellipticity for a class of kinetic equations.
    Communications in Partial Differential Equations 36 (2011) 693-728.
  40. Hua Chen, Wei-Xi Li and Chao-Jiang Xu.
    Analytic smoothness effect of solutions for spatially homogeneous Landau equation.
    Journal of Differential Equations 248 (2010) 77-94.
  41. Hua Chen, Wei-Xi Li and Chao-Jiang Xu.
    Gevrey regularity for solution of the spatially homogeneous Landau equation.
    Acta Mathematics Scientia 29(2009), 673-686.
  42. Hua Chen, Wei-Xi Li and Chao-Jiang Xu.
    Gevrey hypoellipticity for linear and non-linear Fokker-Planck equations.
    Journal of Differential Equations 246 (2009), 320- 339.
  43. Hua Chen, Wei-Xi Li and Chao-Jiang Xu.
    Propagation of Gevrey regularity for solutions of Landau equations.
    Kinetic and Related Models 1(2008), 355- 368.
  44. Shaohua Wu, Hua Chen and Wei-Xi Li.
    The local and global existence of the solutions of hyperbolic-parabolic system modeling biological phenomena.
    Acta Mathematics Scientia 28 (2008), 101- 116.
  45. Wei-Xi Li and Tong Yang.
    Well-posedness in Gevrey function space for the three-dimensional Prandtl equations.
    arXiv:1708.08217. Unpublished.

Collaborators & Mentors

Radjesvarane Alexandre • Hongmei Cao • Hua Chen • Jun-Ling Chen • Ke Chen • Feng Cheng Nils Dencker • Renjun Duan Ling-Bing He Frédéric Hérau • Xin Hu • Jie Ji • Nicolas Lerner • Lvqiao Liu • Peng Luo Nader MasmoudiVan-Sang Ngo Marius Paicu Alberto Parmeggiani • Shuying Tian • Ling-Jun Wang • Xue Ping Wang • Yan-Lin Wang • Di Wu • Shaohua Wu • Chao-Jiang Xu • Rui Xu • Xiaojing Xu • Zhan Xu• Anita Yang •Tong Yang • Tianyuan Yu • Juan Zeng • Jinpeng Zhan • Ping Zhang